

October 3, 2017

TSX: ASND www.ascendantresources.com

CONTINUED HIGH-GRADE INTERSECTIONS FROM ONGOING DRILLING CONFIRMS ASCENDANT RESOURCES' HIGHER POTENTIAL MINING GRADE AND TONNAGE THEORY AT EL MOCHITO

• ZnEq grades proving to be consistently above current mining grade

Key Highlights*: (true and apparent widths):

Infill Holes

- HOLE 10875 **5.5m at 45.5% ZnEq**, 5.2% zinc, 2.7% lead, 2,297 g/t silver and 0.98% copper
- HOLE 10887 23.4m at 7.7% ZnEq. 6.5% zinc, 1.0% lead, 24 g/t silver and 0.04% copper
- HOLE 10904 **12.2m at 12.6% ZnEq**, 6.6% zinc, 5.6% lead, 81 g/t silver and 0.1% copper

Step-out Holes

- HOLE 10884 **4.1m at 11.1% ZnEq**, 10.1% zinc, 0.6% lead, 31 g/t silver and 0.12% copper
- HOLE 10880 **5.1m at 7.6% ZnEq**, 3.1% zinc, 2.5% lead, 149 g/t silver and 0.55% copper
- HOLE 10870 **4.1m at 12.0% ZnEq**, 10.0% zinc, 1.9% lead, 95 g/t silver and 0.17% copper

*ZnEq. Represents zinc grade together with the lead and silver grades (zinc equivalent) in terms of zinc using certain metal price, payable metal, and processing recoveries assumptions: Prices - Zn\$1.13/lb, Pb\$1.00/lb, Ag\$18.00/oz; Payable metal - Zn 85%, Pb 95%, Ag 69%, Processing recoveries - Zn 89%, Pb 74%, Ag 79%. Copper grades are currently excluded from ZnEq. Please refer to tables for true/apparent widths.

TORONTO, ONTARIO - Ascendant Resources Inc. (TSX: ASND) (OTCQX: ASDRF; FRA: 2D9) ("Ascendant" or the "Company" - <u>https://www.youtube.com/watch?v=34gl7FZBBhA&t=18s</u>) is very excited to announce the results of an additional 49 diamond drill holes totaling 6,170 meters (561 samples), as part of its ongoing underground exploration and resource definition drilling program at its El Mochito Mine in Honduras.

The results provide Ascendant with confidence that following an extended period of little exploration activity at El Mochito, there is a good possibility to dramatically increase head grades into the mining operations and schedule in the near-term.

To date, the Company has received results for over half of its planned 33,200m program (See Press release June 26, 2017), with approximately 8,000m of further drilling to be completed in the next few

months. The Company intends to complete a new NI 43-101-compliant Mineral Reserve and Resource statement by the spring of 2018.

These latest results come from 4,168m of infill and 2,541m of step-out exploration drilling which continue to target the extensions of four ore bodies; namely Palmar Dyke, Santa Elena, Victoria and Esperanza. Significant assay results have been reported from 41 of the 49 holes and are summarized in the tables below.

The Esperanza orebody is already being mined on its western edge and this drilling represents a further extension to the East at similar grades. The other three orebodies are very close to existing workings and could be accessed within six to twelve months. All orebodies remain open along strike and at depth. Figure 1 below outlines the locations of the orebodies relative to existing workings.

Chris Buncic, President and CEO of Ascendant commented: "This second set of drill results from our 2017 drill program are well above current mining grades and highlight the incredible potential for additional highgrade zinc mineralization at our El Mochito property. Part of our theory during our acquisition of El Mochito was that lack of exploration over the course of many years past has created a great opportunity to significantly expand the resources and grade at the mine, and results like these continue to inspire this confidence.

He continued, "Our efforts to increase the head grade to the mill remain supported by the fact that several of the areas under investigation could be brought into production over the next six to twelve months. In addition, we are excited by the potential of the higher copper grades found, though further work will be required to assess the economic viability of producing a copper concentrate in addition to our existing zinc, lead and silver production."

Diamond Drill Hole Category	No. DDH	From (m)	To (m)	Interval (m)	True/ Apparent width* (m)	ZnEq %**	Zn %	Pb %	Ag g/t	Cu %	Area
Infill	10860	22.9	23.9	1.1	1.0	7.1	1.0	1.8	279	0.67	Palmar Dyke
	and	182.6	186.6	4.0	3.6	9.3	3.7	3.4	170	0.11	Palmar Dyke
	and	206.0	207.6	1.5	1.4	19.9	7.3	9.5	287	0.04	Palmar Dyke
Step out	10865	18.9	21.8	2.9	2.6	8.7	1.9	2.9	266	0.36	Palmar Dyke
	and	156.4	158.5	2.1	1.9	22.7	12.8	8.6	174	0.03	Palmar Dyke
Infill	10867	174.0	182.6	8.5	7.7	10.0	6.5	2.9	69	0.14	Palmar Dyke
	including	174.0	178.3	4.3	3.8	8.5	5.7	2.3	53	0.12	Palmar Dyke
	including	178.3	182.6	4.3	3.8	11.5	7.3	3.4	85	0.17	Palmar Dyke
Infill	10869	18.3	20.3	1.9	1.7	5.9	2.0	2.2	121	0.33	Palmar Dyke
Infill	10871	194.8	199.6	4.9	4.4	6.0	3.8	1.6	55	0.15	Palmar Dyke
	including	194.8	196.6	1.8	1.6	10.2	7.0	2.4	74	0.22	Palmar Dyke
	including	196.6	199.6	3.0	2.7	3.5	1.8	1.2	43	0.10	Palmar Dyke
Infill	10873	190.2	195.1	4.9	4.4	18.2	9.5	6.7	190	0.09	Palmar Dyke
	including	190.2	192.0	1.8	1.6	8.7	5.3	2.0	102.0	0.1	Palmar Dyke
	including	192.0	195.1	3.0	2.7	23.9	12.1	9.5	244	0.07	Palmar Dyke
Step out	10874				No Significant ii	ntercepts					Palmar Dyke
Infill	10875	128.9	130.4	1.5	1.3	23.3	0.8	2.7	1221	0.74	Palmar Dyke
	and	169.2	175.3	6.1	5.5	45.5	5.2	2.7	2297	0.98	Palmar Dyke
	including	169.2	170.7	1.5	1.4	159.7	16.1	7.9	8263	3.36	Palmar Dyke
	including	170.7	174.0	3.4	3.0	7.2	1.6	1.0	286	0.14	Palmar Dyke
	including	174.0	175.3	1.2	1.1	8.2	1.3	1.0	368	0.29	Palmar Dyke
	and	199.2	200.6	1.4	1.3	7.7	2.4	2.5	199	0.08	Palmar Dyke

Table 1: Significant Assays

Infill	10876	45.0	46.0	1.1	1.0	6.9	0.3	0.3	388	0.28	Palmar Dyke
	and	148.1	150.0	1.1	1.6	7.8	1.0	0.5	361	0.28	Palmar Dyke
Infill	10877	181.4	182.9	1.5	1.4	4.1	1.3	1.0	121	0.00	Palmar Dyke
Step out	10878	11.0	12.2	1.2	1.1	8.7	2.7	2.3	253	0.34	Palmar Dyke
Infill	10879	152.4	161.8	9.4	4.6	8.5	3.7	2.4	171	0.18	Palmar Dyke
	including	152.4	153.8	1.4	1.2	6.3	0.6	0.6	314	0.09	Palmar Dyke
	including	155.4	157.7	2.3	2.1	4.1	1.7	1.6	71	0.11	Palmar Dyke
	including	160.4	161.8	1.4	1.3	17.8	10.1	5.6	193	0.37	Palmar Dyke
Step out	10880	8.7	14.3	5.6	5.1	7.6	3.1	2.5	149	0.55	Palmar Dyke
	and	25.6	26.5	0.9	0.8	53.3	14.4	7.8	1958	1.28	Palmar Dyke
	and	160.9	163.7	2.7	2.5	8.5	5.6	2.5	50	0.06	Palmar Dyke
Infill	10881	19.2	20.7	1.5	1.4	19.7	7.8	8.1	315	0.52	Palmar Dyke
	and	140.4	141.2	0.9	0.8	12.6	0.6	0.5	700	0.20	Palmar Dyke
	and	148.1	150.3	2.1	1.9	5.0	0.4	0.5	255	0.05	Palmar Dyke
	and	159.4	160.8	1.4	1.3	20.5	8.5	8.9	284	0.02	Palmar Dyke
Step out	10882	155.4	158.5	3.0	2.7	6.7	5.5	0.7	39	0.10	Palmar Dyke
Step out	10884	119.9	123.1	3.2	2.9	9.4	1.7	2.4	341	0.10	Palmar Dyke
	and	132.7	134.7	2.0	1.8	7.8	4.8	2.2	73	0.04	Palmar Dyke
	and	158.5	163.1	4.6	4.1	11.1	10.1	0.6	31	0.12	Palmar Dyke
Step out	10858	25.6	28.0	2.4	2.1	5.8	3.1	2.5	37	0.37	Victoria
Step out	10859	43.7	46.5	2.7	2.3	8.1	4.3	3.4	56	0.62	Victoria
Step out	10861	33.5	35.1	1.6	1.3	8.1	4.7	3.6	30	0.04	Victoria
Step out	10862	29.1	30.8	1.7	1.4	5.9	3.1	2.8	33	0.10	Victoria
Step out	10863	23.6	25.0	1.4	1.2	4.2	2.1	2.2	19	0.01	Victoria
Step out	10864	26.3	26.9	0.6	0.5	7.3	3.7	3.6	39	0.17	Victoria
Step out	10866	151.8	156.7	4.9	2.9	7.4	6.3	0.9	19	0.01	Victoria
	including	<i>151.8</i> 153.6	<i>153.6</i> 156.7	1.8 3.0	1.1 1.8	3.8 9.5	2.8 8.4	0.8 1.0	18 19	0.02 0.01	Victoria
	including and	166.4		1.2	0.7	9.5	8.4 10.7	0.2	19	0.01	Victoria
Step out	10868	94.4	167.6 95.7	1.2	0.7	6.4	4.0	2.3	34	0.23	Victoria Victoria
Step Out	and	116.4	119.5	3.0	1.8	5.5	4.0	1.0	12	0.47	Victoria
	and	141.7	143.3	1.5	0.9	13.5	12.9	0.3	24	0.00	Victoria
Step out	10870	115.1	121.9	6.9	4.1	12.0	10.0	1.9	23	0.13	Victoria
Step out	including	115.1	118.0	2.9	1.7	10.2	6.2	4.3	32	0.01	Victoria
	including	118.0	119.7	1.7	1.0	1.1	0.9	0.2	3	0.01	Victoria
	including	119.7	121.9	2.3	1.4	22.6	21.9	0.3	26	0.50	Victoria
	and	144.2	145.7	1.5	0.9	7.8	7.3	0.3	18	0.02	Victoria
	and	146.6	147.7	1.1	0.6	12.5	9.0	2.5	87	0.64	Victoria
Step out	10872	84.4	86.1	1.7	1.0	14.0	7.9	6.0	75	0.20	Victoria
	and	90.2	91.6	1.4	0.8	5.8	3.8	1.9	26	0.27	Victoria
Step out	10896	102.5	105.1	2.6	1.6	6.1	3.5	2.6	28	0.09	Victoria
Step out	10905	56.4	59.1	2.7	1.6	9.7	5.7	4.0	43	0.02	Victoria
Infill	10883	304.5	311.2	6.7	6.7	9.2	5.6	3.5	39	0.03	Santa Elena
	including	304.5	307.2	2.7	2.7	3.2	2.2	0.8	21	0.00	Santa Elena
	including	307.2	311.2	4.0	4.0	13.3	8.0	5.4	52	0.05	Santa Elena
Infill	10887	305.8	334.1	28.3	23.4	7.7	6.5	1.0	24	0.04	Santa Elena
	including	305.8	311.5	5.7	3.5	14.4	8.3	5.3	103	0.09	Santa Elena
	including	311.5	315.5	4.0	3.6	11.2	9.6	1.6	22	0.04	Santa Elena
	including	315.5	319.1	3.7	3.3	9.0	8.7	0.1	11	0.03	Santa Elena
	including	319.1	323.1	4.0	3.6	3.1	2.9	0.1	8	0.02	Santa Elena
	including	323.1	326.7	3.7	3.3	6.1	5.7	0.2	11	0.05	Santa Elena
1 - C11	including	326.7	334.1	7.3	6.6	5.0	4.9	0.0	7	0.02	Santa Elena
Infill	10886 including	24.4	32.6	8.2	7.0	5.8	4.8	0.5	40	0.07	Esperanza
	including	24.4	27.3	2.9	2.5	4.4	3.2	0.7	33	0.08	Esperanza
lof:	including	27.3	32.6	5.3	4.5	6.6	5.6	0.3	43	0.07	Esperanza
Infill Infill	10888 10889	15.0	18.3	3.3	2.8 No Significant i	4.5	2.6	1.8	26	0.00	Esperanza Esperanza
Infill	10889	23.2	25.0	1.8	No Significant in 1.1	6.2	3.3	2.6	40	0.0	Esperanza Esperanza
	and	23.2	36.3	6.7	4.0	11.6	6.4	4.9	75	0.06	Esperanza
	unu	29.0	30.3	0.7	4.0	11.0	0.4	4.9	75	0.00	Laperaliza

	including	29.6	32.6	3.0	1.8	14.4	8.0	5.9	93	0.06	Esperanza
	including	32.6	33.5	0.9	0.5	4.8	2.5	2.1	34	0.00	Esperanza
	including	33.5	35.1	1.5	0.9	16.1	8.8	6.9	100	0.04	Esperanza
	including	35.1	36.3	1.2	0.7	4.4	2.2	2.1	31	0.05	Esperanza
Infill	10891	16.9	19.8	3.0	2.5	5.0	2.8	2.1	29	0.00	Esperanza
	and	21.6	25.9	4.3	3.6	4.5	3.2	0.4	58	0.05	Esperanza
Infill	10893	21.0	23.5		No Significant i		5.2	0.1	50	0.05	Esperanza
Infill	10894				No Significant i						Esperanza
Infill	10895				No Significant i						Esperanza
Infill	10897				No Significant i						Esperanza
Infill	10898	40.8	45.1	4.3	2.6	8.4	5.3	2.9	45	0.02	Esperanza
	including	40.8	43.0	2.1	1.3	11.8	8.2	3.2	60	0.04	Esperanza
	including	43.0	45.1	2.1	1.3	5.0	2.4	2.6	30	0.00	Esperanza
Infill	10899				No Significant i	ntercepts	1		1		Esperanza
Infill	10901	21.3	27.3	5.9	3.6	8.9	5.9	1.9	87	0.42	Esperanza
	including	21.3	22.3	0.9	0.5	4.0	1.9	2.2	24	0.00	Esperanza
	including	22.3	24.4	2.1	1.3	8.7	5.4	3.2	46	0.01	Esperanza
	including	24.4	25.9	1.5	0.9	14.62	10.8	0.6	204	1.26	Esperanza
	including	25.9	27.3	1.4	0.8	6.06	4.2	1.0	61	0.41	Esperanza
	and	35.1	45.4	10.4	6.2	8.58	7.9	0.1	36	0.09	Esperanza
	including	35.1	38.1	3.0	1.8	9.28	8.9	0.1	19	0.07	Esperanza
	including	38.1	41.8	3.7	2.2	7.91	7.4	0.1	28	0.07	Esperanza
	including	41.8	45.4	3.7	2.2	8.65	7.6	0.2	57	0.12	Esperanza
Infill	10903			-	No Significant i	ntercepts	_				Esperanza
Infill	10904	70.6	90.8	20.3	12.2	12.6	6.6	5.6	81	0.1	Esperanza
	including	70.6	72.2	1.7	1.0	12.6	6.6	5.6	89	0.0	Esperanza
	including	72.2	73.2	0.9	0.5	17.3	8.6	8.7	92	0.0	Esperanza
	including	73.2	74.7	1.5	0.9	21.8	12.1	9.2	129	0.1	Esperanza
	including	74.7	76.2	1.5	0.9	6.8	4.3	2.4	35	0.1	Esperanza
	including	76.2	77.7	1.5	0.9	21.4	12.0	9.0	119	0.2	Esperanza
	including	77.7	79.7	2.0	1.2	31.5	16.1	12.6	307	0.8	Esperanza
	including	79.7	81.4	1.7	1.0	7.2	4.1	3.2	30	0.0	Esperanza
	including	81.4	83.2	1.8	1.1	5.8	3.2	2.7	26	0.0	Esperanza
	including	83.2	85.0	1.8	1.1	7.9	3.9	4.0	43	0.0	Esperanza
	including	85.0	86.9	1.8	1.1	8.3	4.2	4.2	40	0.0	Esperanza
	including	86.9	88.7	1.8	1.1	9.0	4.6	4.6	41	0.0	Esperanza
	including	88.7	89.9	1.2	0.7	2.5	1.4	1.2	9	0.0	Esperanza
	including	89.9	90.8	0.9	0.5	7.7	3.8	4.0	39	0.0	Esperanza
Infill	10906	62.2	85.6	23.5	14.1	6.8	4.1	2.1	62	0.0	Esperanza
	including	62.2	71.6	9.4	5.7	3.1	1.1	0.7	90	0.0	Esperanza
	including including	71.6 73.2	73.2 74.7	1.5 1.5	0.9 0.9	11.5 12.0	6.4 5.8	4.8 5.8	71 90	0.0	Esperanza Esperanza
	including	73.2	76.2	1.5	0.9	20.8	5.8 17.9	2.8	36	0.1	Esperanza
	including	76.2	77.7	1.5	0.9	7.1	5.6	2.8	20	0.0	Esperanza
	including	77.7	79.6	1.8	1.1	7.1	6.1	1.4	15	0.0	Esperanza
	including	79.6	80.8	1.2	0.7	2.6	0.7	1.9	23	0.0	Esperanza
	including	80.8	82.3	1.5	0.9	4.2	2.0	1.9	42	0.0	Esperanza
	including	82.3	85.6	3.4	2.0	8.7	4.7	3.9	44	0.0	Esperanza
	including	88.4	89.6	1.2	0.7	2.9	1.9	0.9	13	0.0	Esperanza
Infill	10907	81.1	88.0	6.9	4.1	7.7	4.2	2.4	92	0.0	Esperanza
	including	81.1	82.3	1.2	0.7	4.5	1.5	0.4	165	0.6	Esperanza
	including	82.3	84.1	1.8	1.1	4.5	3.2	0.4	61	0.0	Esperanza
	including	84.1	86.0	1.8	1.1	13.5	7.8	4.6	117	0.1	Esperanza
	including	86.0	88.0	2.0	1.2	7.2	3.6	3.3	53	0.0	Esperanza
Infill	10910	74.3	85.2	10.9	6.5	9.0	4.3	4.7	54	0.0	Esperanza
	including	74.3	75.4	1.1	0.7	6.8	3.6	3.2	39	0.0	Esperanza
	including	75.4	76.2	0.8	0.5	9.9	5.1	4.8	53	0.0	Esperanza
	including	76.2	78.3	2.1	1.3	12.6	5.9	6.7	71	0.0	Esperanza
	including	78.3	79.9	1.5	0.9	12.3	5.8	6.5	74	0.0	Esperanza

	including	79.9	81.1	1.2	0.7	8.4	3.7	4.7	52	0.0	Esperanza
	including	81.1	82.6	1.5	0.9	4.5	2.1	2.2	32	0.0	Esperanza
	including	82.6	83.8	1.2	0.7	7.5	3.6	3.9	45	0.0	Esperanza
	including	83.8	85.2	1.4	0.8	8.1	4.0	4.0	49	0.0	Esperanza
Infill	10911	74.1	87.0	13.0	7.8	6.7	3.5	3.0	43	0.0	Esperanza
	including	74.1	75.9	1.8	1.1	5.5	2.9	2.2	47	0.1	Esperanza
	including	75.9	77.4	1.5	0.9	5.5	2.8	2.7	33	0.0	Esperanza
	including	77.4	79.2	1.8	1.1	9.0	5.3	3.6	43	0.0	Esperanza
	including	79.2	80.8	1.5	0.9	6.6	3.7	2.8	38	0.0	Esperanza
	including	80.8	82.3	1.5	0.9	4.8	2.5	2.3	28	0.0	Esperanza
	including	82.3	83.8	1.5	0.9	6.2	3.0	3.2	37	0.0	Esperanza
	including	83.8	85.3	1.5	0.9	3.2	0.9	2.3	23	0.0	Esperanza
	including	85.3	87.0	1.7	1.0	11.9	6.4	4.9	91	0.0	Esperanza
Infill	10914	27.1	30.8	3.7	2.2	6.7	4.0	2.6	39	0.0	Esperanza
	and	34.1	36.6	2.4	1.5	6.7	2.9	0.7	196	0.9	Esperanza
	and	44.2	46.9	2.7	1.6	7.3	7.1	0.0	10	0.0	Esperanza
* True Thicl	kness is not kno	wn at this ti	me in Palmar	Dyke and Vic	toria						
** ZnEq. Re	epresents zinc gr	ade togethe	er with the lea	ad and silver g	grades (zinc equ	ivalent) in tei	rms of zir	nc using	certain n	netal prie	ce, payable
metal, and	processing reco	veries assur	nptions:								
** 7nFa Δs	sumptions. Dri	$rec = 7n \pm 1.1$	3/16 Ph\$1 00	/lb Ag\$18 00/	Oz. Davahla m	atal - 7n 85%	Ph 95%	Δσ 6006	Proces	sing roc	overies - 7n

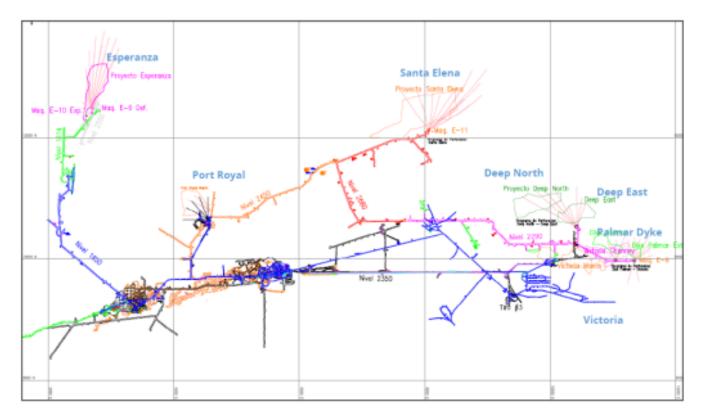

** ZnEq. Assumptions: **Prices** - Zn\$1.13/lb, Pb\$1.00/lb, Ag\$18.00/oz; **Payable metal** - Zn 85%, Pb 95%, Ag 69%, **Processing recoveries** - Zn 89%, Pb 74%, Ag 79%. Copper grades are currently excluded from ZnEq.

Table 2: Drill Hole Information

	Coordinates (UTM)											
Category	No. DDH	Easting (m)	Northing (m)	Elevation above datum (m)	Azimuth	Inclination	Depth (m)	Area/Ore body	Level Underground (feet)			
Infill	10860	384,283.3	1,642,151.9	112.7	330.5	51.0	241	Palmar Dyke	2790			
Step out	10865	384,284.0	1,642,152.1	112.7	2	56	201	Palmar Dyke	2790			
Infill	10867	384,284.5	1,642,151.9	108.4	23	62	201	Palmar Dyke	2790			
Infill	10869	384,284.5	1,642,151.9	112.3	23	51	215	Palmar Dyke	2790			
Infill	10871	384,284.1	1,642,150.8	114.9	22	83	213	Palmar Dyke	2790			
Infill	10873	384,283.3	1,642,151.9	113.3	331	69	213	Palmar Dyke	2790			
Step out	10874	384,377.9	1,642,145.1	113.1	40	64	169	Palmar Dyke	2790			
Infill	10875	384,285.0	1,642,151.2	114.7	61	76	232	Palmar Dyke	2790			
Infill	10876	384,376.3	1,642,144.1	114.1	347	75	187	Palmar Dyke	2790			
Infill	10877	384,284.0	1,642,150.6	114.9	50	85	253	Palmar Dyke	2790			
Step out	10878	384,376.4	1,642,143.8	114.1	360	80	197	Palmar Dyke	2790			
Infill	10879	384,284.0	1,642,150.5	114.9	340	81	221	Palmar Dyke	2790			
Step out	10880	384,376.4	1,642,143.6	114.1	30	70	176	Palmar Dyke	2790			
Infill	10881	384,284.0	1,642,152.1	113.0	0	60	235	Palmar Dyke	2790			
Step out	10882	384,376.4	1,642,145.6	112.8	358	52	183	Palmar Dyke	2790			
Step out	10884	384,375.6	1,642,145.9	113.1	15	62	175	Palmar Dyke	2790			
Step out	10858	384,376.4	1,642,144.0	108.8	358.0	-49.8	94	Victoria	2790			
Step out	10859	384,376.4	1,642,144.0	109.7	0.2	-22.0	91	Victoria	2790			
Step out	10861	384,377.2	1,642,144.6	108.8	32	-65	73	Victoria	2790			
Step out	10862	384,377.3	1,642,144.9	108.8	30	-36	82	Victoria	2790			
Step out	10863	384,377.6	1,642,144.4	108.8	43	-54	73	Victoria	2790			
Step out	10864	384,378.3	1,642,144.9	109.7	47	-22	61	Victoria	2790			
Step out	10866	384,376.8	1,642,142.1	108.8	164	-55	192	Victoria	2790			
Step out	10868	384,376.7	1,642,142.8	108.8	166	-70	166	Victoria	2790			
Step out	10870	384,375.9	1,642,141.4	108.8	193	-61	175	Victoria	2790			
Step out	10872	384,376.1	1,642,142.0	108.8	190	-74	115	Victoria	2790			
Step out	10896	384,284.0	1,642,148.3	108.4	148	-77.2	128	Victoria	2790			
Step out	10905	384,284.8	1,642,146.6	108.4	159	-45.8	188	Victoria	2790			

Infill	10883	383,372.8	1,642,806.6	123.2	10	-85	341	Santa Elena	2680
Infill	10887	383,372.9	1,642,807.0	123.2	15	-79	351	Santa Elena	2680
Infill	10886	381,744.6	1,642,922.4	176.6	275	-1	59	Esperanza	2550
Infill	10888	381,744.6	1,642,922.3	175.3	276	-26	32	Esperanza	2550
Infill	10889	381,745.5	1,642,922.3	175.0	276	-70	18	Esperanza	2550
Infill	10890	381,745.1	1,642,923.7	176.6	305	0.0	47	Esperanza	2550
Infill	10891	381,745.1	1,642,923.7	175.4	305	-25.0	45	Esperanza	2550
Infill	10893	381,745.6	1,642,923.3	175.1	300	-50	36	Esperanza	2550
Infill	10894	381,744.6	1,642,922.3	176.8	277	8	61	Esperanza	2550
Infill	10895	381,745.1	1,642,923.6	177.2	310	20	67	Esperanza	2550
Infill	10897	381,745.1	1,642,923.6	176.9	305	10	70	Esperanza	2550
Infill	10898	381,745.9	1,642,924.3	176.6	331	-1.0	73	Esperanza	2550
Infill	10899	381,745.9	1,642,924.3	176.9	330	20	76	Esperanza	2550
Infill	10901	381,746.3	1,642,923.7	175.1	331	-21	59	Esperanza	2550
Infill	10903	381,744.2	1,642,921.3	176.6	254	0	34	Esperanza	2550
Infill	10904	381,746.5	1,642,924.7	176.6	350	0	101	Esperanza	2550
Infill	10906	381,746.7	1,642,924.8	176.9	347	14.8	98	Esperanza	2550
Infill	10907	381,746.5	1,642,924.7	177.2	347	26	98	Esperanza	2550
Infill	10910	381,746.7	1,642,924.8	177.5	346.5	35.3	101	Esperanza	2550
Infill	10911	381,746.7	1,642,924.8	177.8	346.2	44.4	110	Esperanza	2550
Infill	10914	381,746.7	1,642,924.8	175.7	349	-25	82	Esperanza	2550

Figure 1: Exploration Areas in 2017

Quality Assurance and Quality Control

Analytical work was carried out by Bureau Veritas Commodities Canada Ltd. (ACME), Vancouver, Canada. Drill core samples were prepared in Bureau Veritas's laboratory in Guatemala City, Guatemala. Pulp samples were then sent to their analytical Laboratory in Vancouver, Canada. All samples were analyzed for zinc, Lead, copper, iron and silver values determined by method code AR402 atomic absorption spectrometry, and any over limit values were determined using method code FA410. Bureau Veritas has routine quality control procedures which ensure that every batch of 30 prepared samples includes three sample repeats, two commercial standards and blanks. Bureau Veritas is independent from Ascendant. Ascendant used standard QA/QC procedures, when inserting blanks and certified reference standards, and included duplicate samples for the drilling program. The scientific and technical information in this press release has been reviewed and approved by Robert A. Campbell, P.Geo., Director to Ascendant and a Qualified Person as defined by National Instrument 43-101.

About Ascendant Resources

Ascendant Resources Inc. is a mining company focused on its producing El Mochito zinc, silver and lead mine in west-central Honduras in which the Company has a 100% interest. El Mochito has been in production since 1948. The Company evaluates producing and advanced development stage mineral resource acquisition opportunities in North, South and Central America, on an ongoing basis. The Company's common shares are principally listed on the TSX Venture Exchange under the symbol "ASND". For more information on Ascendant Resources, please visit our website at www.ascendantresources.com.

Neither the TSX Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Exchange) accepts responsibility for the adequacy or accuracy of this release.

For further information please contact:

Katherine Pryde Director, Communications & Investor Relations Tel: 888-723-7413 info@ascendantresources.com

Swiss Resource Capital AG Jochen Staiger info@resource-capital.ch www.resource-capital.ch

Cautionary Notes to US Investors

The information concerning the Company's mineral properties has been prepared in accordance with National Instrument 43-101 ("NI-43-101") adopted by the Canadian Securities Administrators. In accordance with NI-43-101, the terms "mineral reserves", "proven mineral reserve", "probable mineral reserve", "mineral resource", "measured mineral resource", "indicated mineral resource" and "inferred mineral resource" are defined in the Canadian Institute of Mining, Metallurgy and Petroleum (the "CIM") Definition Standards for Mineral Resources and Mineral Reserves adopted by the CIM Council on May 10, 2014. While the terms "mineral resource" are recognized and required by NI 43-101, the U.S. Securities Exchange Commission ("SEC") does not recognize them. The reader is cautioned that, except for that portion of mineral resources classified as mineral resources, mineral resources do not have demonstrated economic value. Inferred mineral resources

have a high degree of uncertainty as to their existence and as to whether they can be economically or legally mined. It cannot be assumed that all or any part of any inferred mineral resource will ever be upgraded to a higher category. Therefore, the reader is cautioned not to assume that all or any part of an inferred mineral resource exists, that it can be economically or legally mined, or that it will ever be upgraded to a higher category. Likewise, you are cautioned not to assume that all or any part of a measured or indicated mineral resource will ever be upgraded into mineral reserves.

Readers should be aware that the Company's financial statements (and information derived therefrom) have been prepared in accordance with International Financial Reporting Standards ("IFRS") as issued by the International Accounting Standards Board and are subject to Canadian auditing and auditor independence standards. IFRS differs in some respects from United States generally accepted accounting principles and thus the Company's financial statements (and information derived therefrom) may not be comparable to those of United States companies.

Cautionary Note Regarding Forward-Looking Information

Forward Looking Information

This news release contains "forward-looking statements" and "forward-looking information" (collectively, "forward-looking information") within the meaning of applicable Canadian securities legislation. All information contained in this news release, other than statements of current and historical fact, is forward-looking information. Often, but not always, forward-looking information can be identified by the use of words such as "plans", "expects", "budget", "guidance", "scheduled", "estimates", "forecasts", "strategy", "target", "intends", "objective", "goal", "understands", "anticipates" and "believes" (and variations of these or similar words) and statements that certain actions, events or results "may", "could", "would", "should", "might" "occur" or "be achieved" or "will be taken" (and variations of these or similar expressions). Forward-looking information is also identifiable in statements of currently occurring matters which may continue in the future, such as "providing the Company with", "is currently", "allows/allowing for", "will advance" or "continues to" or other statements that may be stated in the present tense with future implications. All of the forward-looking information in this news release is qualified by this cautionary note.

Forward-looking information in this news release includes, but is not limited to, statements regarding additional drilling efforts, the possibility of dramatically increasing head grades into the mining operation, the ability to expand the resources and grades at the mine, access to additional orebodies, assessing the economic viability of producing copper concentrate. Forward-looking information is not, and cannot be, a guarantee of future results or events. Forward-looking information is based on, among other things, opinions, assumptions, estimates and analyses that, while considered reasonable by Ascendant at the date the forward-looking information is provided, inherently are subject to significant risks, uncertainties, contingencies and other factors that may cause actual results and events to be materially different from those expressed or implied by the forward-looking information. The material factors or assumptions that Ascendant identified and were applied by Ascendant in drawing conclusions or making forecasts or projections set out in the forward-looking information include, but are not limited to, the Company's ability to carry on further drilling, the Company's ability to access additional orebodies, the Company's ability to dramatically increase head grades in the mining operation, the Company's ability to expand the resources and grades at the mine and the Company's ability to assess the economic viability of producing copper concentrate, and other events that may affect Ascendant's ability to develop its project; and no significant and continuing adverse changes in general economic conditions or conditions in the financial markets.

Forward looking statements are subject to known and unknown risks, uncertainties and other important factors that may cause the actual results, performance or achievements of Ascendant to be materially different from those expressed or implied by such forward looking statements, including, but not limited to: the Company may not be able to increase head grades into the mining operation, the Company may not be able to expand the resources and grades at the mine, risks generally associated with the mining industry,

such as economic factors (including future commodity prices, currency fluctuations, energy prices and general cost escalation), uncertainties related to the development and operation of Ascendant's projects, dependence on key personnel and employee and union relations, risks related to political or social unrest or change, rights and title claims, operational risks and hazards, including unanticipated environmental, industrial and geological events and developments and the inability to insure against all risks, failure of plant, equipment, processes, transportation and other infrastructure to operate as anticipated, compliance with government and environmental regulations, including permitting requirements and anti-bribery legislation, volatile financial markets that may affect Ascendant's ability to obtain additional financing on acceptable terms, the failure to obtain required approvals or clearances from government authorities on a timely basis, uncertainties related to the geology, continuity, grade and estimates of mineral reserves and resources, and the potential for variations in grade and recovery rates, uncertain costs of reclamation activities, tax refunds, hedging transactions, as well as the risks discussed in Ascendant's most recent Annual Information Form on file with the Canadian provincial securities regulatory authorities and available at www.sedar.com.

Should one or more risk, uncertainty, contingency or other factor materialize or should any factor or assumption prove incorrect, actual results could vary materially from those expressed or implied in the forward-looking information. Accordingly, the reader should not place undue reliance on forward-looking information. Ascendant does not assume any obligation to update or revise any forward-looking information after the date of this news release or to explain any material difference between subsequent actual events and any forward-looking information, except as required by applicable law.