ாカヘレンケロN

Mawson＇s Subsidiary SXG Drills 2，318 g／t Gold Over 1.0 m in Best Hole at Sunday Creek

Within broader Interval 455.3 m＠ 7.2 g／t Au（uncut）Traversing 12 High－Grade Vein Sets Highest grade gold ever intersected：7，330 g／t Au over 0.3 m
 Demonstrates continuity between extremely high－grade gold intercepts

Vancouver，Canada－Mawson Gold Limited（＂Mawson＂or the＂Company＂）（TSXV：MAW） （Frankfurt：MXR）（PINKSHEETS：MWSNF）－https：／／www．commodity－ tv．com／ondemand／companies／profil／mawson－gold－ltd／－announces Southern Cross Gold Ltd．（＂Southern Cross Gold＂or＂SXG＂）has released results from SDDSC107 from the Rising Sun prospect，the best hole drilled to date at Sunday Creek，that returned a spectacularly long and high－grade intersection of gold－antimony mineralization including 1.0 m ＠2，318 g／t Au drilled within 455.3 m ＠ $7.2 \mathrm{~g} / \mathrm{t}$ Au from 413.6 m （uncut）at the 100\％－owned Sunday Creek Project in Victoria，Australia（Figures 1－5）．

Highlights：

－SDDSC107 drilled at Rising Sun，intercepted the highest－grade gold and best intersection drilled to date at Sunday Creek：

○ $0.3 \mathrm{~m} @ 7,330 \mathrm{~g} / \mathrm{t}$ Au within $1.0 \mathrm{~m} @ 2,318 \mathrm{~g} / \mathrm{t} \mathrm{Au}$（estimated true width（＂ETW＂） 0.7 m）from 684.3 m
－Within a broader interval traversing 12 high－grade vein sets of $\mathbf{4 5 5 . 3} \mathbf{~ m}$＠ $7.2 \mathrm{~g} / \mathrm{t} \mathrm{Au}$（uncut） from 335.0 m ．
－SDDSC107 contains $\mathbf{1 0}$ assayed intervals＞50g／t Au（up to 7，330 g／t Au）and $\mathbf{1 3}$ intervals＞ $\mathbf{5}$ \％ $\mathbf{S b}$（up to $\mathbf{2 5 . 9}$ \％Sb）．Cumulatively the hole returned $\mathbf{3 , 4 2 4} \mathbf{A u E q ~ g / t ~ x ~ m . ~}$
－SDDSC107 contained four $\mathbf{> 1 0 0} \mathbf{A u E q} \mathbf{g} / \mathbf{t} \mathbf{x} \mathbf{~ m}$ intersections：
－ $\mathbf{1 5 . 0} \mathbf{~ m}$＠ $\mathbf{1 5 . 2} \mathbf{~ g / t ~ A u E q ~ (~} 9.3 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 3.7 \% \mathrm{Sb}$ ）from 546.8 m
－ $9.1 \mathbf{~ m}$＠ $\mathbf{4 0 . 0} \mathbf{~ g} / \mathbf{t}$ AuEq（ $39.1 \mathrm{~g} / \mathrm{t} \mathrm{Au}, \mathbf{0 . 6 \%} \mathrm{Sb}$ ）from 566.9 m
－ $\mathbf{1 . 0} \mathbf{~ m}$＠2，318．8 g／t AuEq（ $2,318.4 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.3 \% \mathrm{Sb}$ ）from 684.3 m
－ $\mathbf{7 . 6} \mathbf{~ m}$＠ $\mathbf{1 3 . 5} \mathbf{~ g} / \mathbf{t}$ AuEq（ $13.3 \mathrm{~g} / \mathrm{t} \mathrm{Au}, \mathbf{0 . 2 \% ~ S b) ~ f r o m ~} 782.7$ m
－The hole was drilled to test strike extent and continuity of 12 high－grade vein set structures 20 m along strike and down－dip from SDDSC077B（ 404.4 m ＠ $5.6 \mathrm{~g} / \mathrm{t}$ AuEq（uncut））（Figures 3，4，5）．
－The highest－grade interval $\mathbf{1 . 0} \mathbf{~ m}$＠2，318 $\mathbf{~ g / t ~ A u}$ in SDDSC107 is located 17 m down－dip from SDDSC092 （ 3.3 m ＠ $267.8 \mathrm{~g} / \mathrm{t}$ Au including $0.4 \mathrm{~m} @ 1,610 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ ）within vein set RS80，
－Provides one of the first demonstrations of continuity between extremely high－grade（＞1，000 g／t Au ）intersections at Sunday Creek（Figure 3）．
－Seven drillholes at Sunday Creek at are being processed and analysed，with three holes in progress．
－SXG will be presenting drill core at PDAC in Toronto 2024 at Booth 3110B on Tuesday，March 5， 2024，between 10：00am－5：00pm ET and Wednesday，March 6，2024，between 9：00am－12：00pm ET．
－Mawson owns $93,750,000$ shares of SXG（51\％），valuing its stake at A $\$ 121.9$ million（C $\$ 107.7$ million）based

Michael Hudson, Mawson Interim CEO and Executive Chairman, states: "Sunday Creek has again delivered one of the hits of the year and the rebirth of the Victorian goldfields continues. This is an extraordinary global discovery with hole after hole exceeding previous exceptional drill results. Here, drill hole SDDSC107 from Rising Sun intercepted the highest grade and best intersection at the project with $1.0 \mathrm{~m} @ 2,318 \mathrm{~g} / \mathrm{t} \mathbf{A u}$ including 0.3 m@7,330 g/t Au drilled within a broader interval of 455.3 m @ $7.2 \mathrm{~g} / \mathrm{t}$ Au (uncut).
"Importantly, for the first time we have demonstrated continuity of extremely high grades with SDDSC107 intersecting its best grades 17 m down-dip from SDDSCO92, which intersected $3.3 \mathrm{~m} @ 267.8 \mathrm{~g} / \mathrm{t}$ Au including 0.4 $m @ 1,610 \mathrm{~g} / \mathrm{t}$ Au in vein set RS80 (Figure 3). This provides an enticing opportunity to now focus on these ultra high grade zones, in small but rich areas, with closer spaced drilling (including wedging) to rapidly build ounces beyond our initial exploration target expectations while we also continue to expand the footprint of the mineralized system.
"With four drill rigs operating, ten holes being processed or in progress, we look forward to continued news flow. "

Picture 1: Quartz carbonate vein with banded sulphides and course visible gold disseminated along fractures.
Interval assayed 0.3 m @ 7,331g/t Au from 684.7 m

Drill Hole Discussion

SDDSC107 contains $\mathbf{1 0}$ assayed intervals $\mathbf{>} \mathbf{5 0} \mathbf{~ g} / \mathrm{t}$ Au (up to 7,330 g/t Au), $\mathbf{2 1}$ intervals $\mathbf{> 1 5} \mathbf{~ g / t ~ A u}$ and 13 intervals of $\mathbf{>} \mathbf{5} \% \mathbf{~ S b}$ (up to $\mathbf{2 5 . 9} \% \mathbf{~ S b}$) and hosts the highest grades (up to $7330 \mathrm{~g} / \mathrm{t} \mathrm{Au}$) and best intersection drilled to date at Sunday Creek, including four $>100 \mathrm{AuEq} \mathrm{g} / \mathrm{tx} \mathrm{m}$ intersections from Sunday Creek. Cumulatively the hole returned $3,424 \mathrm{AuEq} \mathrm{g} / \mathrm{t} x \mathrm{~m}$.
SDDSC107 was designed to test the strike extent and continuity of high-grade vein sets 20 m along strike (and down dip) from SDDSC077B ($404.4 \mathrm{~m} @ 5.6 \mathrm{~g} / \mathrm{t}$ AuEq (uncut)). The hole successfully intersected 12 vein sets over a 470 m downhole depth. Figure 5 shows the relationship between SDDSC107, SDDSC077B and surrounding holes in the same dipping plane down the trace of the hole (+/-415m window around drillholes). Longitudinal sections of two vein sets (from the 45 veins sets defined to date at Sunday Creek) are also shown in Figures 3 and 4 and described below:

Vein Set RS80

SDDSC107 intercepted the highest grades and best intersection drilled at Sunday Creek ($\mathbf{1 . 0} \mathbf{~ m @ 2 3 1 8} \mathbf{~ g} / \mathbf{t}$ Au including $\mathbf{0 . 3} \mathbf{~ m} @ 7330 \mathbf{g} / \mathbf{t ~ A u}$). This intersection was located 17 m down-dip of SDDSC092 (3.3 m @
$267.8 \mathrm{~g} / \mathrm{t}$ Au including $0.4 \mathrm{~m} @ 1610 \mathrm{~g} / \mathrm{t} \mathrm{Au}$) in vein set RS80 (Figure 3). This is the best demonstration to date of continuity between extremely high-grades intersections at Sunday Creek that have been defined by closer spaced drilling. The highest grades on vein set RS80 currently appear to form on the dyke footwall contact with altered sediments.

This contact remains open 40 m up dip and 33 m down dip towards drill hole SDDSC050 which intersected 2.5 m @ $16.4 \mathrm{~g} / \mathrm{t}$ AuEq (ETW 1.7 m). The vein is open to depth, and poorly constrained with limited drilling along strike. Drilling these very high-grade structures at close spacing (15 m to 25 m spacing) is increasing our confidence in continuity of extremely high grades at Sunday Creek. Vein morphology and grade tenor suggests that the same vein set has been intersected in a 170 m up/down dip and up to 60 m strike area. Several holes that are in progress or awaiting assay (SDDSC113, 114, 115A, 117) will continue to build the emerging opportunity in vein set RS80.

Vein Set RS50

SDDSC107 also intersected vein set RS50 in the dyke footwall and altered sediment contact intersecting $\mathbf{1 5 . 0} \mathbf{~ m}$ @ $\mathbf{1 5 . 2} \mathbf{~ g} / \mathrm{t}$ AuEq (ETW 6.6 m) from 546.8 m (Figure 4). Vein set RS50 has been traced for 560 m up and down dip and remains open at depth. The opportunity to focus on the very highest-grade parts of the Sunday Creek system are also apparent in vein set RS50.

Expanded highlights from SDDSC107 include:

- 3.0 m @ 6.2 g/t AuEq ($5.7 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.3 \% \mathrm{Sb}$) from 348.7 m , including:
- $\mathbf{1 . 0} \mathbf{~ m}$ @ $\mathbf{1 3 . 7} \mathbf{~ g / t ~ A u E q ~ (~} 13.6 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.1 \% \mathrm{Sb}$) from 349.6 m
- $\mathbf{1 . 0} \mathbf{~ m}$ @ $\mathbf{6 . 6} \mathbf{~ g} / \mathbf{t}$ AuEq ($6.6 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.0 \% \mathrm{Sb}$) from 380.0 m
- $\mathbf{0 . 2} \mathbf{~ m} @ 11.0 \mathbf{g} / \mathbf{t}$ AuEq ($0.8 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 6.4 \% \mathrm{Sb}$) from 416.9 m
- $1.0 \mathbf{~ m}$ @ $\mathbf{3 1 . 3} \mathbf{~ g} / \mathrm{t}$ AuEq ($14.7 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 10.5 \% \mathrm{Sb}$) from 425.0 m
- $\mathbf{0 . 3} \mathbf{~ m}$ @ $9.0 \mathbf{g} / \mathbf{t}$ AuEq ($8.6 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.2 \% \mathrm{Sb}$) from 446.8 m
- 2.9 m @ 22.4 g/t AuEq ($17.5 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 3.1 \% \mathrm{Sb}$) from 491.6 m , including:
- 2.3 m @ 27.3 g/t AuEq ($21.8 \mathrm{~g} / \mathrm{t} \mathrm{Au}, \mathbf{3 . 5 \% ~ S b) ~ f r o m ~} 492.2 \mathrm{~m}$
- $3.1 \mathbf{~ m}$ @ 21.6 g/t AuEq ($19.7 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 1.2 \% \mathrm{Sb}$) from 497.0 m , including:
- $\mathbf{0 . 3} \mathbf{~ m}$ @ $\mathbf{2 1 3 . 1} \mathbf{~ g / t ~ A u E q ~ (1 9 8 . 0 ~ g / t ~ A u , ~ 9 . 6 \% ~ S b) ~ f r o m ~} 497.0$ m
- 0.5 m @ 6.9 g/t AuEq ($4.5 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 1.5 \% \mathrm{Sb}$) from 526.2 m
- $\mathbf{1 5 . 0} \mathbf{~ m}$ @ $\mathbf{1 5 . 2} \mathbf{~ g / t ~ A u E q ~ (~} 9.3 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 3.7 \% \mathrm{Sb}$) from 546.8 m , including:
- 4.4 m @ 33.4 g/t AuEq ($19.0 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 9.1 \% \mathrm{Sb}$) from 549.3 m
- $\mathbf{1 . 7} \mathbf{~ m}$ @ $\mathbf{3 5 . 7} \mathbf{~ g / t}$ AuEq ($25.1 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 6.7 \% \mathrm{Sb}$) from 557.5 m
- $9.1 \mathbf{~ m}$ @ 40.0 g/t AuEq ($39.1 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.6 \% \mathrm{Sb}$) from 566.9 m , including:
- $\mathbf{0 . 3} \mathbf{~ m}$ @ 1,402.1 g/t AuEq ($1,400.0 \mathrm{~g} / \mathrm{t}$ Au, $1.3 \% \mathrm{Sb}$) from 572.9 m
- $\mathbf{0 . 3} \mathbf{~ m}$ @ $\mathbf{3 2 . 4} \mathbf{~ g} / \mathbf{t}$ AuEq ($31.5 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.6 \% \mathrm{Sb}$) from 585.1 m
- $1.8 \mathbf{~ m}$ @ $\mathbf{1 9 . 5} \mathbf{~ g} / \mathrm{t}$ AuEq ($16.4 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 1.9 \% \mathrm{Sb}$) from 588.3 m , including:
- $\mathbf{1 . 4} \mathbf{~ m}$ @ $\mathbf{2 5 . 1} \mathbf{~ g / t}$ AuEq ($21.2 \mathrm{~g} / \mathrm{t} \mathrm{Au}, \mathbf{2 . 4 \% ~ S b) ~ f r o m ~} 588.3 \mathrm{~m}$
- $1.0 \mathbf{m}$ @ 2,318.8 g/t AuEq ($2,318.4 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.3 \% \mathrm{Sb}$) from 684.3 m , including:
- $\mathbf{0 . 7} \mathbf{~ m} @ \mathbf{3 , 5 1 1 . 7} \mathbf{~ g / t ~ A u E q ~ (3 , 5 1 1 . 0 ~ g / t ~ A u , ~} 0.4 \% \mathrm{Sb}$) from 684.3 m (including $\mathbf{0 . 3} \mathbf{~ m} @ \mathbf{7 , 3 3 0} \mathbf{~ g / t}$ $\mathrm{Au})$
- $\mathbf{0 . 5} \mathbf{~ m}$ @ $7.0 \mathbf{g} / \mathbf{t}$ AuEq ($5.6 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.9 \% \mathrm{Sb}$) from 695.0 m
- $0.9 \mathbf{~ m}$ @ $\mathbf{5 . 7} \mathbf{~ g} / \mathbf{t}$ AuEq ($5.6 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.0 \% \mathrm{Sb}$) from 702.2 m
- 2.7 m @ $\mathbf{1 4 . 7} \mathbf{~ g} / \mathrm{t}$ AuEq ($10.9 \mathrm{~g} / \mathrm{t} \mathrm{Au}, \mathbf{2} .4 \% \mathrm{Sb}$) from 723.0 m , including:
- $\mathbf{0 . 3} \mathbf{~ m}$ @ $\mathbf{5 7 . 6} \mathbf{~ g} / \mathbf{t}$ AuEq ($26.9 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 19.4 \% \mathrm{Sb}$) from 723.0 m
- $\mathbf{0 . 4} \mathbf{~ m}$ @ $\mathbf{4 8 . 6} \mathbf{~ g} / \mathbf{t}$ AuEq ($46.3 \mathrm{~g} / \mathrm{t} \mathrm{Au}, \mathbf{1 . 5 \% ~ S b) ~ f r o m ~} 724.7 \mathrm{~m}$
- 0.5 m @ 7.1 g/t AuEq ($7.0 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.1 \% \mathrm{Sb}$) from 731.0 m
- $7.6 \mathbf{m}$ @ $\mathbf{1 3 . 5} \mathbf{~ g / t ~ A u E q ~ (~} 13.3 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.2 \% \mathrm{Sb}$) from 782.7 m , including:
- $\mathbf{0 . 3} \mathbf{~ m}$ @ $\mathbf{1 8 . 2} \mathbf{~ g} / \mathbf{t}$ AuEq ($18.2 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.0 \% \mathrm{Sb}$) from 782.7 m
- $\mathbf{2 . 4} \mathbf{~ m}$ @ $\mathbf{3 9 . 0} \mathbf{~ g} / \mathbf{t}$ AuEq ($38.4 \mathrm{~g} / \mathrm{t} \mathrm{Au}, \mathbf{0 . 3 \% ~ S b) ~ f r o m ~} 784.4 \mathrm{~m}$

Pending Results and Update

Seven holes (SDDSC110-112, 112W1, 113, 114, 115A) are currently being processed and analysed, with three holes (SDDSC116, 117, 118) in progress (Figures 1 and 2).

SXG Presenting Core at PDAC 2024 Core Shack

SXG has been selected by the PDAC 2024 technical committee to display its core at this year's "Core Shack" at the exhibition in Toronto, Canada.
Exploration Manager Kenneth Bush will be at Booth 3110B on Tuesday, March 5, 2024, between 10:00am 5:00pm ET and Wednesday, March 6, 2024, between 9:00am - 12:00pm ET with selections of core from drill holes SDDSC082, SDDSC091 and SDDSC107 from Sunday Creek. Staff from Southern Cross Gold will also be available at Mawson's Booth 2939 from Sunday 03 to Wednesday 06 March.

Further Information

Further discussion and analysis of the Sunday Creek project by Southern Cross Gold is available on the SXG website at www.southerncrossgold.com.au.

No upper gold grade cut is applied in the averaging and intervals are reported as drill thickness. During future Mineral Resource studies, the requirement for assay top cutting will be assessed.

Figures 1 to 7 show project location, plan, longitudinal and cross-sectional views of drill results reported here and Tables 1 to 3 provide collar and assay data. The true thickness of the mineralized intervals reported individually as estimated true widths ("ETW"), otherwise they are interpreted to be approximately 60% to 70% of the sampled thickness for other reported holes. Lower grades were cut at $1.0 \mathrm{~g} / \mathrm{t}$ AuEq lower cutoff over a maximum width of 2 m with higher grades cut at $5.0 \mathrm{~g} / \mathrm{t}$ Au lower cutoff over a maximum of 1 m width.

Technical Background and Qualified Person

The Qualified Person, Michael Hudson, Executive Chairman and a director of Mawson Gold, and a Fellow of the Australasian Institute of Mining and Metallurgy, has reviewed, verified and approved the technical contents of this release.
Analytical samples are transported to the Bendigo facility of On Site Laboratory Services ("On Site") which operates under both an ISO 9001 and NATA quality systems. Samples were prepared and analyzed for gold using the fire assay technique (PE01S method; 25 gram charge), followed by measuring the gold in solution with flame AAS equipment. Samples for multi-element analysis (BM011 and over-range methods as required) use aqua regia digestion and ICP-MS analysis. The QA/QC program of Southern Cross Gold consists of the systematic insertion of certified standards of known gold content, blanks within interpreted mineralized rock and quarter core duplicates. In addition, On Site inserts blanks and standards into the analytical process.
MAW considers that both gold and antimony that are included in the gold equivalent calculation ("AuEq") have reasonable potential to be recovered at Sunday Creek, given current geochemical understanding, historic production statistics and geologically analogous mining operations. Historically, ore from Sunday Creek was treated onsite or shipped to the Costerfield mine, located 54 km to the northwest of the project, for processing during WW1. The Costerfield mine corridor, now owned by Mandalay Resources Ltd contains two million ounces of equivalent gold (Mandalay Q3 2021 Results), and in 2020 was the sixth highest-grade global underground mine and a top 5 global producer of antimony.

SXG considers that it is appropriate to adopt the same gold equivalent variables as Mandalay Resources Ltd in its Mandalay Technical Report, 2022 dated 25 March 2022. The gold equivalence formula used by Mandalay Resources was calculated using recoveries achieved at the Costerfield Property Brunswick Processing Plant during 2020, using a gold price of US $\$ 1,700$ per ounce, an antimony price of US\$8,500 per tonne and 2021 total year metal recoveries of 93% for gold and 95% for antimony, and is as follows:

$$
A u E q=A u(g / t)+1.58 \times S b(\%) .
$$

Based on the latest Costerfield calculation and given the similar geological styles and historic toll treatment of Sunday Creek mineralization at Costerfield, SXG considers that a $A u E q=A u(g / t)+1.58 \times S b(\%)$ is appropriate to use for the initial exploration targeting of gold-antimony mineralization at Sunday Creek.

About Mawson Gold Limited (TSXV:MAW, FRANKFURT:MXR, OTCPINK:MWSNF)

Mawson Gold Limited has distinguished itself as a leading Nordic exploration company. Over the last decades, the team behind Mawson has forged a long and successful record of discovering, financing, and advancing mineral projects in the Nordics and Australia. Mawson holds the Skellefteå North gold discovery and a portfolio of historic uranium resources in Sweden. Mawson also holds 51% of Southern Cross Gold Ltd. (ASX:SXG) which owns or controls three high-grade, historic epizonal goldfields covering 470 km^{2} in Victoria, Australia, including the exciting Sunday Creek Au-Sb discovery.

About Southern Cross Gold Ltd (ASX:SXG)

Southern Cross Gold holds the 100\%-owned Sunday Creek project in Victoria and Mt Isa project in Queensland, the Redcastle and Whroo joint ventures in Victoria, Australia, and a strategic 10\% holding in ASX-listed Nagambie Resources Limited (ASX:NAG) which grants SXG a Right of First Refusal over a 3,300 square kilometer tenement package held by NAG in Victoria.

On behalf of the Board

"Michael Hudson"

Michael Hudson, Interim CEO and Executive Chairman

Further Information

 www.mawsongold.com1305 - 1090 West Georgia St., Vancouver, BC, V6E 3V7
Mariana Bermudez (Canada), Corporate Secretary +1 (604) 6859316 info@mawsongold.com

In Europe:

Swiss Resource Capital AG
Jochen Staiger \& Marc Ollinger
info@resource-capital.ch
www.resource-capital.ch

Forward-Looking Statement

This news release contains forward-looking statements or forward-looking information within the meaning of applicable securities laws (collectively, "forward-looking statements"). All statements herein, other than statements of historical fact, are forward-looking statements. Although Mawson believes that such statements are reasonable, it can give no assurance that such expectations will prove to be correct. Forward-looking statements are typically identified by words such as: believe, expect, anticipate, intend, estimate, postulate, and similar expressions, or are those, which, by their nature, refer to future events. Mawson cautions investors that any forward-looking statements are not guarantees of future results or performance, and that actual results may differ materially from those in forward-looking statements as a result of various factors, including, Mawson's expectations regarding its ownership interest in Southern Cross Gold, capital and other costs varying significantly from estimates, changes in world metal markets, changes in equity markets, the potential impact of epidemics, pandemics or other public health crises, including COVID-19, on the Company's business, risks related to negative publicity with respect to the Company or the mining industry in general; exploration potential being conceptual in nature, there being insufficient exploration to define a mineral resource on the Australian-projects owned by SXG, and uncertainty if further exploration will result in the determination of a mineral resource; planned drill programs and results varying from expectations, delays in obtaining results, equipment failure, unexpected geological conditions, local community relations, dealings with non-governmental organizations, delays in operations due to permit grants, environmental and safety risks, and other risks and uncertainties disclosed under the heading "Risk Factors" in Mawson's most recent Annual Information Form filed on SEDAR. Any forward-looking statement speaks only as of the date on which it is made and, except as may be required by applicable securities laws, Mawson disclaims any intent or obligation to update any forward-looking statement, whether as a result of new information, future events or results or otherwise.

Figure 1: Sunday Creek plan view showing SDDSC107 reported here (grey box, blue highlight), selected prior reported drill holes and pending holes. For location see Figure 4.

Figure 2: Sunday Creek longitudinal section across A-B in the plane of the dyke breccia/altered sediment host (see Figure 1) looking towards the north (striking 236 degrees) showing mineralized veins sets. Showing SDDSC107 reported here and prior reported drill holes.

Figure 3: Sunday Creek longitudinal section across C-D in the plane of the modelled vein set RS80, looking towards the south-west (striking 129 degrees). Showing SDDSC107 (orange trace) reported here and prior reported drill holes.

Figure 4: Sunday Creek longitudinal section across E-F in the plane of the modelled vein set RS50, looking towards the south-west (striking 139 degrees). Showing SDDSC107 (orange trace) reported here and prior reported drill holes.

Figure 5: Sunday Creek unconstrained plan view showing SDDSC107 and SDDSC077B assays with other intersections also shown (SDDSC050, 092). Veins (blue), dyke hanging wall surface relative to SDDSC077B and SDSSC107 (green) and hanging wall mineralized zone (from dyke hanging wall to dotted red line). The distance between SDDSC077B and SDSSC107 is shown along their traces. The RL at the start and end of holes is noted. For reference, surface is approximately 300 m RL. Of note is continuity of mineralized structures in the dyke hanging wall between SDDSC077B and SDSSC107. Host structure dips steeply to the north, veins dip steeply.

Figure 6: Sunday Creek regional plan view showing LiDAR, soil sampling, structural framework, regional historic epizonal gold mining areas and broad regional areas (Tonstal, Consols and Leviathan) tested by 12 holes for 2,383 m drill program. The regional drill areas are at Tonstal, Consols and Leviathan located 4,000-7,500 m along strike from the main drill area at Golden Dyke- Apollo.

Figure 7: Location of the Sunday Creek project, along with SXG's other Victoria projects and simplified geology.

Table 1: Drill collar summary table for recent drill holes in progress.

Hole_ID	Depth (m)	Prospect	East GDA94_Z55	$\begin{gathered} \text { North } \\ \text { GDA94_Z55 } \end{gathered}$	Elevation	Azimuth	Plunge
SDDSC092	803.8	Rising Sun	330537	5867882	295.5	79.0	-60
SDDSC093	610.9	Rising Sun	331291	5867823	316.8	271	-47.5
SDDSC094	23.3	Rising Sun	330639	5867846	306.2	68.5	-56
SDDSC094A	359.6	Rising Sun	330639	5867846	306.1	68.5	-56
SDDSC095	368.3	Apollo	331291	5867823	316.8	271	-53
SDDSC096	347.9	Rising Sun	330639	5867846	306.1	68	-63.5
SDDSC097	62.3	Apollo	331291	5867823	316.8	276	-50.5
SDDSC097A	575	Apollo	331291	5867823	316.8	277	-50
SDDSC098	278.5	Rising Sun	330639	5867846	306.1	72	-48.5
SDDSC099	284.7	Rising Sun	330639	5867846	306.1	71.5	-58.5
SDDSC100	1042	Rising Sun	330482	5867891	289.5	74.5	-64
SDDSC101	181.5	Rising Sun	330639	5867846	306.1	63	-37
SDDSC102	596.8	Rising Sun	330537	5867883	295.5	75	-59
SDDSC103	260.6	Rising Sun	330639	5867847	306.1	53	-53
SDDSC104	595.2	Rising Sun	330639	5867847	306.1	64.5	-65.7
SDDSC105	353.6	Apollo	331291	5867823	316.8	275.3	-55.2
SDDSC106	653.5	Apolo	331291	5867823	316.8	279.5	-53
SDDSC107	815.9	Rising Sun	330537	5867883	295.5	77.5	-62
SDDSC108A	855.9	Apollo	331464	5867865	333	272.5	-50
SDDSC109	520.9	Apollo	331291	5867823	316.8	273.5	-44.5
SDDSC110	856.7	Rising Sun	330482	5867892	289.5	78	-66
SDDSC111	496.7	Apollo	331291	5867823	316.8	270	-38
SDDSC112	490.9	Apollo	331464	5867865	333	267	-42
SDDSC112W1	766.4	Apollo	331329	5867859	200	267	-42
SDDSC113	905.5	Rising Sun	330511	5867853	296.6	67.5	-63.5
SDDSC114	878.6	Rising Sun	330464	5867914	286.6	82	-58
SDDSC115	17.6	Rising Sun	330464	5867912	286.6	83	-58.5
SDDSC115A	923.6	Rising Sun	330464	5867912	286.7	83	-59
SDDSC116	In progress plan 810 m	Rising Sun	331465	5867865	333.3	272.5	-41.5
SDDSC117	In progress plan 1200 m	Rising Sun	330510	5867852	296.5	70.5	-64.5
SDDSC118	In progress plan 1100 m	Rising Sun	330464	5867912	286.6	80	-64.5

Table 2: Tables of mineralized drill hole intersections reported from SDDSC108A using two cut-off criteria. Lower grades cut at $1.0 \mathrm{~g} / \mathrm{t}$ lower cutoff over a maximum of 2 m with higher grades cut at $5.0 \mathrm{~g} / \mathrm{t}$ AuEq cutoff over a maximum of 1 m .

Hole-ID	From (m)	To (m)	Length (m)	Aug/t	Sb\%	AuEq g/t
SDDSC107	335.60	338.03	2.4	0.6	0.4	1.2
SDDSC107	341.01	341.38	0.4	0.8	1.1	2.4
SDDSC107	343.80	344.65	0.8	2.6	0.8	3.8
including	343.80	344.33	0.5	3.3	1.1	5.1
SDDSC107	348.65	351.65	3.0	5.7	0.3	6.2
including	349.60	350.65	1.0	13.6	0.1	13.7
SDDSC107	353.85	354.37	0.5	0.7	0.5	1.5
SDDSC107	362.00	362.34	0.3	3.3	0.3	3.6
SDDSC107	365.46	366.30	0.8	1.1	0.0	1.2
SDDSC107	373.00	377.00	4.0	0.7	0.0	0.7
SDDSC107	380.00	381.00	1.0	6.6	0.0	6.6
SDDSC107	395.26	396.16	0.9	2.3	0.2	2.6
SDDSC107	398.57	399.95	1.4	0.9	0.2	1.2
SDDSC107	405.47	409.55	4.1	0.4	0.2	0.7
SDDSC107	413.88	414.18	0.3	2.0	0.0	2.1
SDDSC107	416.90	417.11	0.2	0.8	6.4	11.0
SDDSC107	424.97	425.93	1.0	14.7	10.5	31.3
SDDSC107	433.82	434.27	0.4	1.3	0.0	1.3
SDDSC107	438.62	439.07	0.4	1.6	0.1	1.7
SDDSC107	444.89	447.45	2.6	1.6	0.1	1.7
including	446.82	447.09	0.3	8.6	0.2	9.0
SDDSC107	491.61	494.50	2.9	17.5	3.1	22.4
including	492.23	494.50	2.3	21.8	3.5	27.3
SDDSC107	496.95	500.00	3.1	19.7	1.2	21.6
including	496.95	497.25	0.3	198.0	9.6	213.1
SDDSC107	526.17	526.68	0.5	4.5	1.5	6.9
SDDSC107	543.54	544.00	0.5	0.7	0.3	1.2
SDDSC107	546.75	561.75	15.0	9.3	3.7	15.2
including	549.34	553.76	4.4	19.0	9.1	33.4
including	557.50	559.22	1.7	25.1	6.7	35.7
including	560.32	560.75	0.4	5.2	1.0	6.8
SDDSC107	566.85	576.00	9.1	39.1	0.6	40.0
including	572.90	573.15	0.3	1400.0	1.3	1402.1
SDDSC107	580.48	583.00	2.5	1.0	0.2	1.3
SDDSC107	585.10	585.35	0.3	31.5	0.6	32.4
SDDSC107	588.28	590.09	1.8	16.4	1.9	19.5
including	588.28	589.65	1.4	21.2	2.4	25.1
SDDSC107	684.32	685.35	1.0	2318.4	0.3	2318.8
including	684.32	685.00	0.7	3511.0	0.4	3511.7

SDDSC107	695.00	695.52	0.5	5.6	0.9	7.0
SDDSC107	700.40	703.70	3.3	2.0	0.4	2.6
including	702.15	703.00	0.9	5.6	0.0	5.7
SDDSC107	708.40	708.70	0.3	2.3	0.0	2.4
SDDSC107	723.03	725.75	2.7	10.9	2.4	14.7
including	723.03	723.30	0.3	26.9	19.4	57.6
including	724.65	725.08	0.4	46.3	1.5	48.6
SDDSC107	728.78	731.55	2.8	1.6	0.2	1.9
including	731.00	731.55	0.5	7.0	0.1	7.1
SDDSC107	746.07	747.02	0.9	2.8	0.0	2.8
SDDSC107	752.81	753.12	0.3	0.3	0.5	1.1
SDDSC107	756.00	757.92	1.9	1.4	0.0	1.4
SDDSC107	769.92	772.20	2.3	2.4	0.1	2.6
including	771.96	772.20	0.2	5.8	0.0	5.9
SDDSC107	775.54	776.35	0.8	0.7	0.4	1.4
SDDSC107	782.70	790.30	7.6	13.3	0.2	13.5
including	782.70	783.00	0.3	18.2	0.0	18.2
including	784.42	786.80	2.4	38.4	0.3	39.0
SDDSC107	809.00	811.63	2.6	1.2	0.0	1.2

Table 3: All individual assays reported from SDDSC108A reported here $>0.1 \mathrm{~g} / \mathrm{t}$ AuEq.

Hole-ID	From (m)	To (m)	Length (m)	Aug/t	Sb\%	AuEq g/t
SDDSC107	318.81	319.75	0.9	0.1	0.0	0.1
SDDSC107	319.75	320.40	0.7	0.1	0.0	0.1
SDDSC107	321.08	322.00	0.9	0.1	0.0	0.1
SDDSC107	322.93	324.02	1.1	0.1	0.0	0.1
SDDSC107	324.02	325.00	1.0	0.1	0.0	0.1
SDDSC107	326.00	326.63	0.6	0.1	0.3	0.6
SDDSC107	326.63	327.50	0.9	0.0	0.0	0.1
SDDSC107	327.50	328.50	1.0	0.1	0.0	0.1
SDDSC107	328.50	328.87	0.4	0.2	0.4	0.8
SDDSC107	328.87	329.82	1.0	0.1	0.1	0.2
SDDSC107	329.82	330.76	0.9	0.2	0.0	0.3
SDDSC107	334.00	335.00	1.0	0.0	0.0	0.1
SDDSC107	335.00	335.60	0.6	0.1	0.3	0.6
SDDSC107	335.60	335.83	0.2	0.5	2.2	4.0
SDDSC107	335.83	336.40	0.6	0.6	0.0	0.6
SDDSC107	336.40	336.82	0.4	1.2	0.6	2.1
SDDSC107	336.82	337.65	0.8	0.3	0.0	0.3
SDDSC107	337.65	338.03	0.4	0.7	0.4	1.3
SDDSC107	338.03	338.72	0.7	0.9	0.0	1.0
SDDSC107	338.72	339.40	0.7	0.7	0.0	0.7
SDDSC107	340.40	341.01	0.6	0.5	0.0	0.5
SDDSC107	341.01	341.38	0.4	0.8	1.1	2.4
SDDSC107	341.38	341.90	0.5	0.5	0.3	1.0
SDDSC107	342.78	343.49	0.7	0.2	0.0	0.3
SDDSC107	343.49	343.80	0.3	0.1	0.2	0.4
SDDSC107	343.80	344.33	0.5	3.3	1.1	5.1
SDDSC107	344.33	344.65	0.3	1.5	0.2	1.8
SDDSC107	344.65	345.80	1.2	0.2	0.1	0.3
SDDSC107	345.80	346.80	1.0	0.0	0.0	0.1
SDDSC107	346.80	347.24	0.4	0.2	0.1	0.3
SDDSC107	348.00	348.65	0.7	0.2	0.0	0.3
SDDSC107	348.65	349.04	0.4	1.6	0.9	3.0
SDDSC107	349.04	349.60	0.6	1.1	0.2	1.3
SDDSC107	349.60	350.20	0.6	18.1	0.1	18.3
SDDSC107	350.20	350.65	0.5	7.5	0.0	7.5
SDDSC107	350.65	351.00	0.4	4.3	0.0	4.3
SDDSC107	351.00	351.30	0.3	0.3	0.0	0.3
SDDSC107	351.30	351.65	0.4	0.6	0.7	1.8
SDDSC107	351.65	352.00	0.4	0.0	0.0	0.1
SDDSC107	352.00	353.00	1.0	0.2	0.0	0.2

SDDSC107	353.00	353.85	0.9	0.1	0.0	0.1
SDDSC107	353.85	354.37	0.5	0.7	0.5	1.5
SDDSC107	354.37	355.05	0.7	0.1	0.0	0.2
SDDSC107	355.05	355.90	0.9	0.2	0.0	0.2
SDDSC107	355.90	357.00	1.1	0.1	0.0	0.1
SDDSC107	357.00	358.00	1.0	0.0	0.0	0.1
SDDSC107	358.00	359.00	1.0	0.1	0.0	0.2
SDDSC107	359.00	360.00	1.0	0.1	0.1	0.2
SDDSC107	361.00	362.00	1.0	0.1	0.0	0.1
SDDSC107	362.00	362.34	0.3	3.3	0.3	3.6
SDDSC107	362.34	363.00	0.7	0.1	0.0	0.1
SDDSC107	363.00	364.00	1.0	0.2	0.0	0.3
SDDSC107	364.00	364.65	0.7	0.7	0.0	0.7
SDDSC107	364.65	365.46	0.8	0.3	0.1	0.5
SDDSC107	365.46	365.97	0.5	1.2	0.0	1.3
SDDSC107	365.97	366.30	0.3	1.0	0.0	1.1
SDDSC107	366.30	366.96	0.7	0.4	0.0	0.5
SDDSC107	366.96	368.00	1.0	0.9	0.0	0.9
SDDSC107	368.00	369.00	1.0	0.5	0.0	0.6
SDDSC107	369.00	370.00	1.0	0.3	0.0	0.3
SDDSC107	370.00	371.00	1.0	0.2	0.0	0.2
SDDSC107	371.00	372.00	1.0	0.2	0.0	0.2
SDDSC107	372.00	373.00	1.0	0.7	0.0	0.7
SDDSC107	373.00	374.00	1.0	1.0	0.0	1.0
SDDSC107	374.00	375.00	1.0	0.3	0.0	0.3
SDDSC107	375.00	376.00	1.0	0.3	0.0	0.3
SDDSC107	376.00	377.00	1.0	1.0	0.0	1.0
SDDSC107	377.00	378.00	1.0	0.5	0.0	0.5
SDDSC107	378.00	379.00	1.0	0.2	0.0	0.2
SDDSC107	379.00	380.00	1.0	0.3	0.0	0.3
SDDSC107	380.00	381.00	1.0	6.6	0.0	6.6
SDDSC107	382.00	383.00	1.0	0.1	0.0	0.1
SDDSC107	383.00	384.00	1.0	0.4	0.0	0.4
SDDSC107	385.00	386.00	1.0	0.1	0.0	0.1
SDDSC107	387.00	388.00	1.0	0.1	0.0	0.1
SDDSC107	394.60	395.26	0.7	0.2	0.0	0.2
SDDSC107	395.26	395.45	0.2	2.9	0.1	3.0
SDDSC107	395.45	395.83	0.4	1.6	0.4	2.2
SDDSC107	395.83	396.16	0.3	2.7	0.1	2.8
SDDSC107	396.80	397.07	0.3	0.5	0.0	0.5
SDDSC107	397.07	398.07	1.0	0.1	0.0	0.1
SDDSC107	398.07	398.27	0.2	0.3	0.0	0.3
SDDSC107	398.57	398.89	0.3	1.8	0.1	1.9

SDDSC107	399.52	399.95	0.4	1.7	0.4	2.4
SDDSC107	404.42	405.47	1.1	0.0	0.0	0.1
SDDSC107	405.47	405.98	0.5	0.9	0.2	1.2
SDDSC107	405.98	406.62	0.6	0.2	0.0	0.2
SDDSC107	406.62	407.10	0.5	0.5	0.2	0.9
SDDSC107	407.10	408.00	0.9	0.3	0.5	1.1
SDDSC107	408.59	409.15	0.6	0.0	0.0	0.1
SDDSC107	409.15	409.55	0.4	1.2	0.4	1.8
SDDSC107	409.55	409.81	0.3	0.1	0.0	0.1
SDDSC107	412.07	412.85	0.8	0.1	0.0	0.1
SDDSC107	412.85	413.12	0.3	0.1	0.0	0.1
SDDSC107	413.12	413.88	0.8	0.4	0.0	0.4
SDDSC107	413.88	414.18	0.3	2.0	0.0	2.1
SDDSC107	414.18	415.00	0.8	0.6	0.0	0.6
SDDSC107	416.90	417.11	0.2	0.8	6.4	11.0
SDDSC107	417.11	418.17	1.1	0.0	0.0	0.1
SDDSC107	418.17	419.28	1.1	0.2	0.0	0.2
SDDSC107	419.28	419.95	0.7	0.2	0.0	0.2
SDDSC107	419.95	420.20	0.3	0.8	0.0	0.8
SDDSC107	420.20	420.75	0.6	0.0	0.0	0.1
SDDSC107	420.75	421.70	1.0	0.1	0.0	0.1
SDDSC107	422.35	423.20	0.9	0.7	0.0	0.7
SDDSC107	423.20	423.97	0.8	0.1	0.3	0.5
SDDSC107	423.97	424.97	1.0	0.3	0.0	0.3
SDDSC107	424.97	425.35	0.4	28.0	25.9	68.9
SDDSC107	425.35	425.93	0.6	6.0	0.4	6.7
SDDSC107	425.93	426.78	0.9	0.2	0.0	0.3
SDDSC107	426.78	427.10	0.3	0.6	0.0	0.6
SDDSC107	427.10	428.27	1.2	0.1	0.0	0.1
SDDSC107	431.06	431.52	0.5	0.2	0.0	0.2
SDDSC107	432.18	432.92	0.7	0.1	0.0	0.1
SDDSC107	432.92	433.34	0.4	0.4	0.0	0.5
SDDSC107	433.82	434.27	0.5	1.3	0.0	1.3
SDDSC107	434.27	435.31	1.0	0.7	0.0	0.7
SDDSC107	436.10	437.00	0.9	0.2	0.0	0.2
SDDSC107	437.00	437.39	0.4	0.3	0.0	0.3
SDDSC107	437.39	437.84	0.5	0.1	0.0	0.1
SDDSC107	438.62	439.07	0.5	1.6	0.1	1.7
SDDSC107	439.75	440.64	0.9	0.4	0.0	0.4
SDDSC107	442.37	443.12	0.8	0.3	0.3	0.8
SDDSC107	443.12	443.57	0.5	0.6	0.1	0.7
SDDSC107	443.57	443.81	0.2	0.9	0.0	1.0
SDDSC107	443.81	444.32	0.5	0.1	0.0	0.1

SDDSC107	444.32	444.89	0.6	0.1	0.0	0.1
SDDSC107	444.89	445.23	0.3	2.7	0.3	3.2
SDDSC107	446.82	447.09	0.3	8.6	0.2	9.0
SDDSC107	447.09	447.45	0.4	2.0	0.0	2.1
SDDSC107	447.45	447.69	0.2	0.6	0.0	0.6
SDDSC107	447.69	448.16	0.5	0.6	0.1	0.7
SDDSC107	448.16	448.60	0.4	0.1	0.0	0.1
SDDSC107	450.00	450.16	0.2	0.9	0.0	0.9
SDDSC107	450.80	451.19	0.4	0.2	0.0	0.2
SDDSC107	451.19	451.37	0.2	0.6	0.0	0.6
SDDSC107	451.37	451.86	0.5	0.4	0.0	0.4
SDDSC107	452.55	453.38	0.8	0.0	0.0	0.1
SDDSC107	456.96	457.55	0.6	0.2	0.3	0.6
SDDSC107	457.55	457.76	0.2	0.4	0.1	0.6
SDDSC107	460.41	460.70	0.3	0.1	0.0	0.1
SDDSC107	462.07	463.04	1.0	0.1	0.0	0.1
SDDSC107	465.80	466.40	0.6	0.8	0.0	0.8
SDDSC107	466.40	467.00	0.6	0.1	0.0	0.1
SDDSC107	467.00	468.00	1.0	0.2	0.0	0.2
SDDSC107	471.00	472.00	1.0	0.0	0.0	0.1
SDDSC107	473.00	474.00	1.0	0.0	0.0	0.1
SDDSC107	474.00	475.00	1.0	0.1	0.0	0.1
SDDSC107	476.00	477.00	1.0	0.3	0.0	0.3
SDDSC107	478.00	479.25	1.3	0.5	0.0	0.6
SDDSC107	480.17	480.81	0.6	0.1	0.0	0.1
SDDSC107	480.81	482.00	1.2	0.1	0.0	0.1
SDDSC107	482.00	482.92	0.9	0.1	0.0	0.2
SDDSC107	482.92	484.00	1.1	0.4	0.0	0.4
SDDSC107	484.97	486.00	1.0	0.2	0.0	0.2
SDDSC107	487.00	488.00	1.0	0.2	0.0	0.3
SDDSC107	488.00	489.00	1.0	0.7	0.0	0.8
SDDSC107	489.00	490.00	1.0	0.1	0.2	0.5
SDDSC107	490.00	491.00	1.0	0.2	0.0	0.2
SDDSC107	491.00	491.61	0.6	0.3	0.0	0.3
SDDSC107	491.61	492.23	0.6	2.1	1.3	4.2
SDDSC107	492.23	492.60	0.4	96.0	15.1	119.9
SDDSC107	492.60	493.02	0.4	16.5	4.1	23.0
SDDSC107	493.02	493.84	0.8	5.2	0.3	5.7
SDDSC107	493.84	494.50	0.7	4.0	0.8	5.2
SDDSC107	494.50	495.75	1.3	0.0	0.0	0.1
SDDSC107	495.75	496.95	1.2	0.1	0.0	0.1
SDDSC107	496.95	497.25	0.3	198.0	9.6	213.1
SDDSC107	498.00	499.00	1.0	0.1	0.0	0.1

SDDSC107	499.00	500.00	1.0	0.5	0.8	1.9
SDDSC107	500.00	501.16	1.2	0.2	0.4	0.8
SDDSC107	501.16	502.00	0.8	0.0	0.1	0.1
SDDSC107	508.50	509.00	0.5	0.0	0.0	0.1
SDDSC107	526.17	526.68	0.5	4.5	1.5	6.9
SDDSC107	531.75	532.47	0.7	0.0	0.2	0.4
SDDSC107	533.71	534.33	0.6	0.4	0.1	0.5
SDDSC107	534.33	535.40	1.1	0.2	0.1	0.3
SDDSC107	535.40	536.60	1.2	0.1	0.0	0.1
SDDSC107	541.63	542.68	1.1	0.1	0.0	0.1
SDDSC107	542.68	543.54	0.9	0.2	0.1	0.3
SDDSC107	543.54	544.00	0.5	0.7	0.3	1.2
SDDSC107	544.00	544.30	0.3	0.1	0.0	0.2
SDDSC107	545.75	546.10	0.4	0.1	0.0	0.2
SDDSC107	546.10	546.75	0.7	0.0	0.0	0.1
SDDSC107	546.75	547.05	0.3	0.6	0.5	1.4
SDDSC107	547.05	548.06	1.0	2.8	0.6	3.8
SDDSC107	548.06	548.45	0.4	0.2	0.3	0.7
SDDSC107	548.45	548.75	0.3	0.2	0.0	0.3
SDDSC107	548.75	549.34	0.6	0.1	0.1	0.2
SDDSC107	549.34	549.87	0.5	14.8	15.7	39.6
SDDSC107	549.87	550.25	0.4	2.0	4.6	9.2
SDDSC107	550.25	550.76	0.5	68.3	21.7	102.6
SDDSC107	550.76	551.06	0.3	3.4	5.6	12.2
SDDSC107	551.06	551.43	0.4	3.5	4.6	10.8
SDDSC107	551.43	551.73	0.3	2.9	14.3	25.5
SDDSC107	551.73	552.03	0.3	8.3	3.1	13.1
SDDSC107	552.03	552.73	0.7	39.6	11.3	57.5
SDDSC107	552.73	553.76	1.0	7.0	2.7	11.2
SDDSC107	553.76	554.62	0.9	1.2	0.5	1.9
SDDSC107	554.62	555.30	0.7	1.2	0.0	1.3
SDDSC107	555.30	555.79	0.5	0.9	0.0	1.0
SDDSC107	555.79	556.00	0.2	1.8	0.5	2.6
SDDSC107	556.00	556.95	1.0	1.0	0.3	1.4
SDDSC107	556.95	557.50	0.6	0.7	0.4	1.4
SDDSC107	557.50	557.90	0.4	3.9	4.0	10.2
SDDSC107	557.90	558.29	0.4	7.2	3.6	12.8
SDDSC107	558.29	558.64	0.4	20.4	5.3	28.8
SDDSC107	558.64	559.22	0.6	54.7	11.6	73.0
SDDSC107	559.22	559.86	0.6	3.2	0.4	3.9
SDDSC107	559.86	560.32	0.5	1.1	0.6	2.0
SDDSC107	560.32	560.75	0.4	5.2	1.0	6.8
SDDSC107	560.75	561.75	1.0	0.9	0.6	1.8

SDDSC107	561.75	562.90	1.2	0.1	0.0	0.2
SDDSC107	565.40	566.55	1.2	0.0	0.0	0.1
SDDSC107	566.55	566.85	0.3	0.6	0.1	0.7
SDDSC107	566.85	567.44	0.6	0.8	0.4	1.5
SDDSC107	568.94	569.30	0.4	0.6	0.3	1.0
SDDSC107	569.30	569.92	0.6	2.9	0.7	4.0
SDDSC107	569.92	570.22	0.3	1.3	0.4	1.9
SDDSC107	570.22	570.75	0.5	1.5	0.4	2.2
SDDSC107	570.75	571.38	0.6	0.3	0.2	0.6
SDDSC107	571.38	572.00	0.6	1.4	1.4	3.6
SDDSC107	572.00	572.90	0.9	0.6	0.6	1.4
SDDSC107	572.90	573.15	0.3	1400.0	1.3	1402.1
SDDSC107	573.15	573.73	0.6	0.9	0.8	2.1
SDDSC107	573.73	574.25	0.5	1.7	1.7	4.3
SDDSC107	574.25	574.65	0.4	0.7	0.6	1.7
SDDSC107	574.65	575.55	0.9	1.0	0.7	2.1
SDDSC107	575.55	576.00	0.5	0.4	0.4	1.1
SDDSC107	576.00	577.00	1.0	0.2	0.1	0.4
SDDSC107	577.00	577.30	0.3	0.1	0.0	0.2
SDDSC107	578.80	579.11	0.3	0.2	0.3	0.6
SDDSC107	580.48	580.90	0.4	1.3	0.3	1.8
SDDSC107	580.90	581.85	1.0	0.0	0.0	0.1
SDDSC107	581.85	582.15	0.3	1.3	0.9	2.6
SDDSC107	582.15	583.00	0.9	1.9	0.1	2.0
SDDSC107	583.60	584.25	0.7	0.0	0.2	0.3
SDDSC107	585.10	585.35	0.3	31.5	0.6	32.4
SDDSC107	585.85	586.45	0.6	0.2	0.1	0.3
SDDSC107	586.45	586.90	0.5	0.0	0.0	0.1
SDDSC107	586.90	587.67	0.8	0.2	0.2	0.5
SDDSC107	587.67	588.28	0.6	0.0	0.0	0.1
SDDSC107	588.28	588.70	0.4	39.1	5.3	47.5
SDDSC107	588.70	589.48	0.8	0.8	0.4	1.5
SDDSC107	589.48	589.65	0.2	71.0	4.4	77.9
SDDSC107	589.65	590.09	0.4	1.4	0.4	2.0
SDDSC107	590.09	590.56	0.5	0.1	0.1	0.2
SDDSC107	602.61	602.95	0.3	0.1	0.0	0.1
SDDSC107	608.00	608.94	0.9	0.1	0.0	0.1
SDDSC107	625.54	625.93	0.4	0.1	0.0	0.1
SDDSC107	625.93	626.59	0.7	0.7	0.1	0.8
SDDSC107	648.30	649.49	1.2	0.1	0.0	0.1
SDDSC107	683.00	684.32	1.3	0.1	0.0	0.1
SDDSC107	684.32	684.70	0.4	496.0	0.5	496.7
SDDSC107	684.70	685.00	0.3	7330.0	0.4	7330.6

SDDSC107	685.00	685.35	0.4	1.3	0.0	1.3
SDDSC107	685.35	686.00	0.7	0.1	0.0	0.2
SDDSC107	686.00	687.00	1.0	0.3	0.3	0.8
SDDSC107	690.00	691.00	1.0	0.4	0.1	0.6
SDDSC107	691.00	692.00	1.0	0.5	0.0	0.6
SDDSC107	692.00	692.70	0.7	0.8	0.0	0.8
SDDSC107	692.70	693.70	1.0	0.2	0.0	0.2
SDDSC107	695.00	695.52	0.5	5.6	0.9	7.0
SDDSC107	695.52	696.00	0.5	0.3	0.0	0.3
SDDSC107	696.00	696.65	0.7	0.2	0.1	0.3
SDDSC107	700.40	701.00	0.6	1.4	0.2	1.7
SDDSC107	701.00	702.15	1.2	0.1	0.0	0.1
SDDSC107	702.15	703.00	0.9	5.6	0.0	5.7
SDDSC107	703.00	703.70	0.7	1.2	1.6	3.7
SDDSC107	703.70	705.00	1.3	0.1	0.1	0.2
SDDSC107	705.00	706.02	1.0	0.1	0.0	0.1
SDDSC107	706.60	707.27	0.7	0.1	0.0	0.2
SDDSC107	707.27	708.40	1.1	0.7	0.0	0.7
SDDSC107	708.40	708.70	0.3	2.3	0.0	2.4
SDDSC107	722.73	723.03	0.3	0.0	0.1	0.1
SDDSC107	723.03	723.30	0.3	26.9	19.4	57.6
SDDSC107	723.30	724.11	0.8	1.2	0.6	2.2
SDDSC107	724.65	725.08	0.4	46.3	1.5	48.6
SDDSC107	725.08	725.75	0.7	2.3	0.1	2.4
SDDSC107	725.75	726.32	0.6	0.4	0.1	0.6
SDDSC107	727.10	727.77	0.7	0.4	0.0	0.5
SDDSC107	727.77	728.78	1.0	0.1	0.1	0.3
SDDSC107	728.78	729.33	0.6	0.3	0.5	1.1
SDDSC107	729.33	729.75	0.4	0.4	0.3	0.9
SDDSC107	729.75	730.40	0.7	0.2	0.1	0.2
SDDSC107	730.40	731.00	0.6	0.1	0.1	0.3
SDDSC107	731.00	731.55	0.6	7.0	0.1	7.1
SDDSC107	731.55	731.94	0.4	0.4	0.0	0.4
SDDSC107	731.94	732.33	0.4	0.1	0.0	0.1
SDDSC107	733.33	734.31	1.0	0.1	0.0	0.1
SDDSC107	734.31	735.19	0.9	0.0	0.0	0.1
SDDSC107	735.19	736.00	0.8	0.1	0.0	0.1
SDDSC107	736.00	736.95	1.0	0.1	0.0	0.1
SDDSC107	736.95	737.85	0.9	0.1	0.0	0.1
SDDSC107	737.85	738.87	1.0	0.1	0.0	0.1
SDDSC107	738.87	739.60	0.7	0.6	0.0	0.6
SDDSC107	739.60	740.05	0.5	0.5	0.0	0.5
SDDSC107	740.66	741.00	0.3	0.4	0.0	0.4

SDDSC107	741.00	741.54	0.5	0.6	0.0	0.6
SDDSC107	741.54	742.27	0.7	0.7	0.0	0.7
SDDSC107	744.00	744.77	0.8	0.2	0.0	0.2
SDDSC107	744.77	745.13	0.4	0.2	0.0	0.2
SDDSC107	745.13	746.07	0.9	0.0	0.0	0.1
SDDSC107	746.07	746.70	0.6	3.2	0.0	3.2
SDDSC107	746.70	747.02	0.3	2.1	0.0	2.2
SDDSC107	751.72	752.45	0.7	0.1	0.0	0.1
SDDSC107	752.81	753.12	0.3	0.3	0.5	1.1
SDDSC107	755.10	755.33	0.2	0.2	0.0	0.2
SDDSC107	755.33	756.00	0.7	0.1	0.0	0.1
SDDSC107	756.00	757.00	1.0	1.0	0.0	1.0
SDDSC107	757.00	757.42	0.4	2.0	0.0	2.0
SDDSC107	757.42	757.73	0.3	1.8	0.0	1.8
SDDSC107	757.73	757.92	0.2	1.2	0.0	1.2
SDDSC107	757.92	758.24	0.3	0.3	0.0	0.4
SDDSC107	758.24	759.20	1.0	0.1	0.0	0.1
SDDSC107	759.20	760.00	0.8	0.3	0.0	0.3
SDDSC107	760.00	760.63	0.6	0.1	0.0	0.1
SDDSC107	760.63	760.90	0.3	0.4	0.0	0.4
SDDSC107	760.90	761.30	0.4	0.2	0.0	0.2
SDDSC107	762.70	763.15	0.5	0.2	0.0	0.2
SDDSC107	763.15	763.81	0.7	0.1	0.0	0.2
SDDSC107	764.23	764.94	0.7	0.0	0.0	0.1
SDDSC107	764.94	765.31	0.4	0.0	0.0	0.1
SDDSC107	765.31	766.08	0.8	0.5	0.0	0.5
SDDSC107	766.08	766.55	0.5	0.1	0.0	0.1
SDDSC107	766.55	767.38	0.8	0.1	0.0	0.1
SDDSC107	768.04	768.24	0.2	0.2	0.1	0.4
SDDSC107	768.24	769.08	0.8	0.1	0.0	0.2
SDDSC107	769.08	769.92	0.8	0.2	0.1	0.3
SDDSC107	769.92	770.79	0.9	3.8	0.2	4.1
SDDSC107	770.79	771.56	0.8	0.7	0.1	0.9
SDDSC107	771.56	771.96	0.4	0.6	0.1	0.8
SDDSC107	771.96	772.20	0.2	5.8	0.0	5.9
SDDSC107	772.20	772.62	0.4	0.4	0.2	0.7
SDDSC107	772.62	773.40	0.8	0.8	0.0	0.8
SDDSC107	773.40	774.26	0.9	0.1	0.0	0.1
SDDSC107	774.26	774.98	0.7	0.1	0.0	0.1
SDDSC107	774.98	775.54	0.6	0.6	0.2	0.8
SDDSC107	775.54	775.83	0.3	0.7	0.6	1.7
SDDSC107	775.83	776.35	0.5	0.8	0.3	1.2
SDDSC107	777.00	778.00	1.0	0.2	0.0	0.2

SDDSC107	780.00	780.67	0.7	0.1	0.0	0.1
SDDSC107	780.67	781.60	0.9	0.5	0.0	0.5
SDDSC107	781.60	782.14	0.5	0.1	0.0	0.2
SDDSC107	782.14	782.70	0.6	0.9	0.0	0.9
SDDSC107	782.70	783.00	0.3	18.2	0.0	18.2
SDDSC107	783.00	783.89	0.9	0.2	0.0	0.3
SDDSC107	783.89	784.42	0.5	0.8	0.0	0.8
SDDSC107	784.42	784.70	0.3	19.4	0.0	19.5
SDDSC107	784.70	784.96	0.3	0.5	0.2	0.8
SDDSC107	784.96	785.41	0.5	0.6	0.2	1.0
SDDSC107	785.41	785.67	0.3	0.7	0.3	1.1
SDDSC107	785.67	786.12	0.5	65.4	0.6	66.3
SDDSC107	786.12	786.44	0.3	2.9	0.6	3.9
SDDSC107	786.44	786.80	0.4	153.0	0.3	153.5
SDDSC107	786.80	787.19	0.4	1.9	0.0	2.0
SDDSC107	787.19	787.60	0.4	0.2	0.0	0.2
SDDSC107	787.60	787.94	0.3	0.2	0.0	0.3
SDDSC107	787.94	788.14	0.2	0.8	0.6	1.8
SDDSC107	788.14	788.70	0.6	1.2	0.3	1.6
SDDSC107	788.70	789.48	0.8	0.9	0.1	1.0
SDDSC107	789.48	790.30	0.8	1.2	0.1	1.3
SDDSC107	790.30	791.12	0.8	0.3	0.0	0.3
SDDSC107	791.12	791.55	0.4	0.4	0.0	0.4
SDDSC107	799.67	799.95	0.3	0.1	0.0	0.1
SDDSC107	799.95	800.36	0.4	0.1	0.0	0.1
SDDSC107	800.36	800.62	0.3	0.0	0.0	0.1
SDDSC107	807.00	808.00	1.0	0.1	0.0	0.1
SDDSC107	809.00	810.00	1.0	1.8	0.0	1.8
SDDSC107	810.00	811.00	1.0	0.7	0.0	0.7
SDDSC107	811.00	811.63	0.6	1.0	0.0	1.0
SDDSC107	811.63	812.18	0.6	0.4	0.0	0.4
SDDSC107	812.18	813.00	0.8	0.1	0.0	0.1

